Parallelizing Ant Colony Optimization via Area of Expertise Learning THESIS
نویسنده
چکیده
Ant colony optimization algorithms have long been touted as providing an effective and efficient means of generating high quality solutions to NP-hard optimization problems. Unfortunately, while the structure of the algorithm is easy to parallelize, the nature and amount of communication required for parallel execution has meant that parallel implementations developed suffer from decreased solution quality, slower runtime performance, or both. This thesis explores a new strategy for ant colony parallelization that involves Area of Expertise (AOE) learning. The AOE concept is based on the idea that individual agents tend to gain knowledge of different areas of the search space when left to their own devices. After developing a sense of their own expertness on a portion of the problem domain, agents share information and incorporate knowledge from other agents without having to experience it firsthand. This thesis shows that when incorporated within parallel ACO and applied to multi-objective environments such as a gridworld, the use of AOE learning can be an effective and efficient means of coordinating the efforts of multiple ant colony agents working in tandem, resulting in increased performance. Based on the success of the AOE/ACO combination in gridworld, a similar configuration is applied to the single objective traveling salesman problem. Yet while it was hoped that AOE learning would allow for a fast and beneficial sharing of knowledge between colonies, this goal was not achieved, despite the efforts detailed within. The reason for this lack of performance is due to the nature of the TSP, whose single objective landscape discourages colonies from learning unique portions of the search space. Without this specialization, AOE was found to make parallel ACO faster than the use of a single large colony but less efficient than multiple independent colonies.
منابع مشابه
Estimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran
In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...
متن کاملOptimal Distributed Generation (DG) Allocation in Distribution Networks using an Improved Ant Colony Optimization (ACO) Algorithm
Abstract: The development of distributed generation (DGs) units in recent years have created challenges in the operation of power grids, especially distribution networks. One of these issues is the optimal allocation (location and capacity) of these units in distribution networks. In this thesis, a method based on the improved ant colony optimization algorithm is presented to solve the problem ...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملOptimization of the total annual cost in a shell and tube heat exchanger by Ant colony optimization technique
This paper examines the total annual cost from economic view heat exchangers based on ant colony optimization algorithm and compared the using optimization algorithm in the design of economic optimization of shell and tube heat exchangers. A shell and tube heat exchanger optimization design approach is expanded based on the total annual cost measured that divided to area of surface and power co...
متن کاملProblem dependent metaheuristic performance in Bayesian network structure learning
Bayesian network (BN) structure learning from data has been an active research area in the machine learning field in recent decades. Much of the research has considered BN structure learning as an optimization problem. However, the finding of optimal BN from data is NP-hard. This fact has driven the use of heuristic algorithms for solving this kind of problem. A major recent focus in BN structu...
متن کامل